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OVERVIEW
Why do we care? -- Aerosol forcing and

climate sensitivity

Sensitivity of aerosol indirect (Twomey)
forcing to natural CCN concentrations

Influence of organics on CCN properties;
organics in small sea spray particles

Whitecap method, whitecap fraction

New estimates of size-dependent sea spray
production flux

Sea salt aerosol in global models

Concluding remarks



CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)
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Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing. 

stepheneschwartz




CLIMATE MODEL DETERMINATION
OF CLIMATE SENSITIVITY

Effect of uncertainty in forcing
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Uncertainty in aerosol forcing allows climate models with widely differing
sensitivities to reproduce temperature increase over industrial period.



ALLOWABLE FUTURE CO2 EMISSIONS
Dependence on climate sensitivity and acceptable increase in

temperature relative to preindustrial
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“Other things being equal”
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Dimethylsulfide --> sulfate --> CCN --> brighter clouds

“Seasalt particle concentrations at cloud height are typically not more
than 1 cm-3 [Radke, 1968; Hobbs, QJ, 1971; Pruppacher, 1978].
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Contours denote change in cloud-top albedo.
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Study Location Number conc
cm-3

Properties

Dinger
JAS, 1970

Below tradewind
inversion,
Caribbean

20 Nonvolatile

Woodcock
JGR, 1972

Cloud base,
Hawaii

15 r ≥ 0.2 µm

Cipriano,
Monahan...
JGR, 1987

Model: Lab expts;
Field measmts of
SSA production;
Whitecap fraction

18 s < 0.5%
(rdry > 0.02 µm)

“With a steady-state background concentration of sea-salt particles
with a concentration of 15-20 cm-3, all of which can serve as CCN,
a biological regulation of climate is less obvious.
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Cloud-top albedo, TOA albedo, Global mean albedo, and Forcing

Global means calculated for marine stratus only (30% of global area).

Increase in number concentration of 30% --> forcing of 1 W m-2.



CRITICAL SUPERSATURATION
Dependence on particle size and composition
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Particles above cloud layer showed greater increase in supersaturation than
particles below cloud.

Composition measured with PILS (particle into liquid sampler) showed
high organic fraction in above cloud aerosol.

Measurements with aerosol mass spectrometer showed organic material in
CCN size range.
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SEA SALT FRACTION OF MARINE AEROSOL, BY NUMBER
Dependence on radius at relative humidity 80%, r80
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Lewis and Schwartz, Sea Salt Aerosol Production, AGU, 2004
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ORGANIC FRACTION IN PRIMARY SEA
SPRAY AEROSOL

Shipboard measurements, northeast Atlantic, west of Ireland
during phytoplankton bloom

 Laboratory Bubble Bursting Ambient Aerosol

Facchini et al., GRL, 2008

Water insoluble organic matter dominates composition for radius
< 0.25 µm.

This insoluble organic matter would be expected to decrease CCN activity.



WHITECAP METHOD FOR DETERMINING
SEA SPRAY AEROSOL FLUX

dF

d r
W

dF

d rlog log80 80
= × wc

Ocean Flux = Whitecap fraction × Flux per white area

Whitecap fraction determined by field observation: photography, satellite

Flux per white area determined by lab experiment or field observation

The whitecap method assumes that the flux per white area is constant,
independent of conditions.

There is little field or laboratory demonstration of this and much
evidence against it.

Nonetheless it is widely used by modelers.



PRIOR DETERMINATIONS
OF WHITECAP FRACTION
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Large symbols, photographic; small symbols, video. Note many zero’s.

Spread in observations shows influence of factors other than wind speed
and/or measurement uncertainty, definition issues – What is white?

Shaded gray band encompasses the bulk of the photographic data; width
about central solid line decreases from factor of 7 to 3.
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SEA SPRAY AEROSOL PRODUCTION FLUX
Measurements and estimates circa 2010

˚C
˚C

De Leeuw, Fairall, Andreas, Anguelova, Lewis, O’Dowd, Schulz, Schwartz, in preparation

New eddy correlation measurements (Geever, not size resolved) and
surf-zone measurements (Clarke) indicate high flux at low r80.

Lab experiments (Keene, seawater with frit; Tyree, frit) also indicate high
flux at low r80; Tyree flux depends strongly on flow rate.

Production flux remains quite uncertain.



SEA SALT AEROSOL
MASS EMISSION FLUX

Annual average in 11 AEROCOM models; g m-2 yr-1

    

Textor et al., ACP 2006; courtesy, Michael Schulz
http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 50.
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Annual global SSA production, Pg yr
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SEA SALT AEROSOL
SEDIMENTATION AND DRY DEPOSITION

Annual average in 11 AEROCOM models; g m-2 yr-1. Note different scales.

http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 100.
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SEA SALT AEROSOL
WET DEPOSITION

Annual average in 11 AEROCOM models; g m-2 yr-1

http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 18.
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SEA SALT AEROSOL
COLUMN MASS LOADING

Annual average in 11 AEROCOM models; g m-2

http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 3.9.
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SEA SALT AEROSOL
MASS SCATTERING EFFICIENCY

Annual average in 11 AEROCOM models; m2 g-1

Range of global annual mean is a factor of 7.

http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl
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SEA SALT AEROSOL
CONTRIBUTION TO OPTICAL DEPTH

Annual average in 11 AEROCOM models

http://dataipsl.ipsl.jussieu.fr/cgi-bin/AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 5.
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AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations

Kinne et al., ACP, 2006
Surface measurements: AERONET network.
Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?
Are the models getting the “right” answer because the answer is known?
Are the satellites getting the “right” answer because the answer is known?



CONCLUDING OBSERVATIONS
• Aerosol indirect (Twomey) forcing is highly dependent on

natural CCN concentrations.

• Increasing indication of substantial primary organic material
in sea spray particles radius < 250 nm.

• Whitecap fraction dependence on controlling variables is
not well constrained, despite new measurements and
approaches (satellite).

• Concerns over the whitecap method itself: Are all white areas
created equal?

• Global sea salt models are well ahead of the understanding:
Right (?) answers for the wrong reasons.




